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EFFECTS OF SURFACE REFLECTIORS
ON SEOCK WAVE IMPULST:

: by
Verna K. Shuler

ABSTRACT': Under free-field conditions, the impulse of an underwater explosion shock
wave 18 constant at a ziven radial distance from the explosive charge. If either

the charge or recording gage is ai shallow depth, however, the rarsfaction wave
reflected back into the watar from the interface (the "surface cat-off wava")
decreases the duration of the positive shock wrve so that the radius of constant
impulse is significantly decressed from its free-wster value. The effect of surface
cut-off is discussed and illustrated in this report. An egustion for shock wave
"partial impulse,” which takes into account the effects of surface cut-off, is
Jdiscuse~d and & computer program that generates a locus of points of constant pertial
impulse is described.
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EFFECTS OF SURFACE REFLECTIORS ON SHOCK WAVE IMPULSE

The impulse of an underwater explosion shock wave, a parameter that is often impor-
tant in determining the demaging effect of the explosion, may be reduced to a small
fraction of its free-water value 1f either the charge or the target is at very
shallow depth. This report discusses & seml-empirical equation that can be used to
approximate the near-surfac: shock wave impulse for various test configurations.

An iterative machine program for estimating contours of constant impulse is also
presented. This program, which is flexible enocugh to be used for a number of appli-
cations, is & significant lmprovement over the tedious and time-consuming manual
methods previously used for estimeting such contours.

This work was performed under ORDTASK Ko. 0RD-332—001f@17-351&-302&, Explosions
Underwater Regearch and Technology.
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EFFECTS OF SURFACE REFLECTIONS ON SHOCK WAVE IMPULSE

1. IRTRODUCTION

From various underwater explosion tests conducted in the past, empiriscal rela-
tionships representing the shock wave impulse for particulir situations have been
developed. Arons (references a and b)*describes the impulse at vaFious ranges from
2 shallow charge in free water as a function of charge weight and ronge. His empiri-
cal power functions were derived from pressure-time records integrated over relatively:
long times, to a point wheze the pressure hed decayed to low amplitude. Slifko
{reference ¢) has developed an empirical relationship for the impulse of the entire
first positive phase of pressure waves measured at long ranges from deep charges in
free water.

A situation frequently of interest in practical applications, for vhich no
provision is made in either of the above-mentioned relationships, is one in vhich
surface reflections arrive at the gage shortly after the shock wave arrival. When
the negative pressure in the surface-reflected wave interacts with the positive
direct pressure wave, it cancels, or “cuts-off,” the pressure in the tail of the
shock wave, thereby decreasing the impulse at the gage location.

Because surface reflections significantly reduce the shock weve impulse vhen
either the charge or the gage is relatively shallow, & semi-empirical equation for
shock wave impulse that includes the effects of surface reflsctions has been devel-
oped and is discussed in this report. This quantity is called "partial” impulse to
differentiste it from the free weter relationship given by Arons. Like that of
Arons, it is a function of charge weight and range, but the time to which the pulse
is integrated is included as a variable in the equastion.

In addition to the discussion of the partial impulse equation, the report
includes a computer program vhich computes the locus of points &t which the under-
water shock wave impulse is constant. Instructions for using the program are also
included.

2. OEMI-EMPIRICAL EXFRESSION FOR SHCCK WAVE IMPULSE

2.1 Assumed Wave Form

The pressure in the shock wave from an underwater explosion rizes almost
instaentaneously to & meximum and then decays to ambient pressure at & rate that
depends on the weight of the explosive charge and the distance the wave has travelled
outward. Tne initial rate of decay can be represented quite accurately by an e po-
nential; at later times, hovever, the pressure decays more slowly so that the approxi-
mation of the wave form by the initial exponential underestimates the pressure in
the tail of the shock wave. Since this report is concerned prirmarily with situastions
in vhich the surface cut-off occurs soon after the shock wave arrival, the error
introduced by using the exponential approximation is negligible for many conditions
of practical interest. The pressure wave for which impulse is computed in this
report is assumed %o be an exponential of the form:

# References are given on page iii.
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P(t) =B exp (- t/8) (1)

where the pesk pressure, P, and time decay constant, 8, conform to the TNT simili-
tude values given by Arons (reference a}:

, W

P (vs1) = 2.16 x 10* (/3 /m)113 (2)

6 (msec) = 6 x 102 w/3 (/3/p)-0-22 (3)

vhere: W = charge weight (1b)
R = slant range (2t).

2.2 Partial Impulse
The shock wave impuise, I, is:

1
I= f lpa (4)
[+]
and from Equations 1 and 4, the partial impulse, Ip, as a function of the integration
%ime, is:
o ~ ;r‘ g 1-51 ( )
IP * By 81 - exp (tllajj 5

and from Bquations (2) and (3):

I? (psi-msec) = 1300 33‘6‘ g0-91 [1 - exp (Q)] (6)

vhere: Q = - 16.47 tﬁ'o"% g 0-22

.

Integration time, t,, for the partial impulse may be either some specified constant
time, t,, or surface cut-off time, t_. Since the surface reflected wave of negative
suplitude cancels the positive pressure in the ghock wave as ghown in Figure 1,
myimm possible integration time is surface cut-off time.

2.3 Surface Cut-0ff Time

Assuming regular scoustic reflection and constant wmve propagation velocity,
surface ot o1l time, ty, is determined Wy the particular charge-gage geooetry.
From the geometric relationships shown .a Figure 2, the following equation for sur-
face cubt-off time can be derived if the vilocity of sound in the water is assumed to
be 5 ft/msec:
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t (maee) = 0.2 [(Ra + h:ﬂ))}"'f2 - ?} (7

vhere: R = slant range from charge to gage, fi
Y = gage depth, £t
D = charge depth, ft.

An equation has been derived for the locus of gage positions at vhich surface cut-
off time is constant. Such & locus is the lower branch of & hyperbolsa with & verti-
cal transverse axis through the charge. The generzl equation for the hyperbola is:

2
i - S (8)
& b
vhere: a = 1/2 &R
b = 1/2 (W12 - m2)H2 ;
X = horizontal range §
AR = difference in path length of the reflected wave and the psth leagth of

the &ijrect wave (also AR = t_ V, shere V = velocity of sound in the
water).

Figure 3 shows several contours of coastant surface cut-off time for e charge
at 865-ft depth. At the water surface t ; = 05 on each marrowing hyperbolic branch
t, incresses and finally reaches a maximim value of 0.346 sec when the gage is
directly below the charge. Since t_  is determined from purely geometric considera-~
tions, the charge and gage locations may be used interchangeably. In othe: wvords,
if the gage, rather than the charge, is held at a constant depth of 865 feet, Figure
3 shows how surface cut-off time varies as charge locstion changes.

2.4 Effect of Surface Cut-0ff Time on Partial Tmpulse

Pigures 4 and 5 illustrate the effect of surface cut-off on shock wave impulse
at a given horizontal distance from the charge. 1In these figures, 10-1b charges are
located at 2-ft and 20-% depths, respectively, and horizontal range is held at
constant 20 feet. Maximum pressure (Equation 2) ana par®ial impulse (Equation 6),
each normalized to its value at 1-f% depth, is plotted versus gage depth; integration
. Time is gurface cut-off time.

PN

TR

In Figure 4, as the gage is lowered from the surface down to about O feet, peak
pressure changes very little because slant range varies oaly slightly. Partial
impulse, however, increases significantly with increesing gage depth until it reaches
a maximum of about 4.5 times its 1-ft value vhen the gage is sbout 13 feet deep.
Increasing surface cut-off time is responsible for the incresse in impulse until the
gage reaches sbout 13 feel; at greater depths, slant range increases enough to off-
3et the surface cut-off effects and impulse decreases sharply. The pressure also
drops off more rapidly for the greater gage depths because of the increasing slant
range.

- LTS N - a2 - T2t eToca
D P T




Y Pk — % 5 . = = S R R TE TR % e R e s
R SR N et R % E: = s AT b S s

0 N T A
AT . Xy FE g R, Eogmw

FOLTR €68-138

With the deeper charge (20 feet) of Figure 5, there is less variastion in shock
wave impulse as the gage is lowered. The impulse here varies ir the same fsshion as
peak pressure; both parameters are at a maximm vhen the charge and gage are at the
same 20-ft depth. Impulse is not greatly affected by surface cut-off when the
charge is at 20 feet because surface reflesctions arrive relatively late.

3. CORTOURS OF CONSTART IMPULSE

3.1 Modification of Free-Fileld Contour

Under free-field conditions, the contours of constant impulse lie along srheri-
cal surfaces centered at the explosion. For a given weight of charge, the radius st
vhich the free-field impulse hss gome particular constant value can be found from
Arons' empirical equation for shock waves integrated to 6.7 @ (reference b):

I (psi-meec) = 1780 Hl/ 3 (91/3/'333'9;) (9)

Rear the water surface, however, the radius must be found from a partial impulse
function such as Equation 6. At some point, Equation 6 becomes a poor approximation,
as discussed below, and empiricel corrections are needed to relate the two impulse
functions. Unfortunately, only fraguentary data obtained at relatively short rarnges
are available so thet 1%t is not possible to empirically define contours for all
conditions of interest. A sample contour that could b= estimmied from available
dats is shown in Figure 6.

In Figure 6, the heavy line is the estimeted contour slong svhich I = 100
psi-msec for a 10-1b charge detonated at 10 feet. For shallow depths, this contour
coincides with the partial impulse contour computed from Equation 6 of this report;
at greater depths the contour coincides with the free-field contour of Arons. These
two liniting curves are shown dashed beyond the point where they coincide with the
desired contour. Interpoletion between the ¢wo limiting contours wms based on the
fragmentary data mentioned above.

3.2 Cecmparison of Contours

It can be seen from Figure 6 that for these particular conditions, the partial
impulse eguation discussed in previous sections of this report provides & poorer fit
as the gage location deepens, and gives an estimated slant range that is about 15%
too smell vhen the gage depth is LO feet. For a different set of conditionms,
the partisl impulse egquation given here might be an excellent ar roximation down to
much greater depths, but there is no simple, straightforward way to extrapolate
Figure 6 to other conditions. The adequacy of the exponentiel approximation must
be reckoned in terms of the number of time constants (8 of Equation 3) over whick
the wave is integrated, and there is no simple generslized expression for this
relative quantity, ¢ = t;_/a. The time constant, 8, depends upon only cherge weight
and rangs, while t depends upon charge weight, total geometry, level of constant
impulse of interest and upon the maximm integration time if such a limit ig imposed.
We do not have adequate data to define empirical corrections to Equation 6 for all
cases of interest; however, certain generalizations can be made. If %, is no greater
than sbout 3 6§, Equaticn 6 probably gives an adequate approximetion of I_.. In terms
of the variables noted on Figure 6, this means that the exponential approximation
will it the true cmtour down to deeper gage depths if (a) charge weight is increased

B i e .~ s "sT s -
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or {b} the impulse level of the desired contour is decreased or (c) the charge is
fired at & shallower depth. ¥When sufficlent date are available, generalized methods
of genersting the contcirs of constant impulse for a rarge of variables will be
developed.

L., COMPUTER PROGRAM FOR ESTIMATING LOCI OF CORSTANT PARTIAL IMPULSE

k.1 General

Since the range corrssponding to & constant partial impulse cannot be found
explicitly from Equastion 6, estimating loci of constant partisl impulse by manual
computation is tedious and time-consuming. Vith the iterative computer program
outlined below, however, the range at vhich Ip is within % 0.1 psi-mgsec of some
constant value, I, can be found ravidly.

4.2 OCutline of Program

The program has been written in the Basic Language on the remote computing
facility at ®OL. It finds the waximum range to vhich & charge of weight W, at depth
D, can deliver some given impulse I, within some specified time ¢ o Although
t, is introduced as a constant value in the program listiang shown here, it can be
introduced in functionel form with only minor program changes. HNote that the maxi-
mum possible duration of the shock wave is the surface cut-off time, & sr ©f BEquation
7; consequently, the program comrares the input perameter t, vith t for the geometiry
in question and uses ts rather than to in coaputing the pa.rt..al i&;aﬁse shenever
t, > ts' If the desired integration time is always t;, then 2 large value for t,
(Such as 10 sec ) should be inserted in the epproprie e data statezent.

A detailed explanation of the program logic is not included in the report
because sufficient couments are scattered throughout the program so that one who
understands the programming language shculd be able to follow the logic. The input
parsmeters from vhich the computer completes all computations are as follows:

charge welght, W, 1b

charge depth, D, £t

gage depth, P i A

given impulse, I, psi-msec
given i::tegratma tize, t,, msec.

— q— Py
N R e
S St S Vi Nt

The iteration involves these four basic steps:

(1) A slant range, R, is sutomatically selected and surface cut-off time, t
for the particular geometric situation is ecalculated.

(2) Partial impulse, I_, is computed using this seme slant range, R, gage
depth, ¥, and char®e weight, W. Integration tiwe, t, is the smaller of
t_or t_.

(3) Partialsimpulse froo step (2) is compared with the given impulse, o;

12 < (I, - 0.1), then range is autczatically decreased or if
Ou.), range is automatically increased. The new range is K and
corresponding surface cut-off time is ¢ ;

(4) The process of computing I_ and comparing with I, is repested until a range
st vhich I = I  * 0.1 psiPusec 1s found.

34

If, for some reason, there is no convergence after 50 iterations, a message indicating
vhere asdjustments should be made will be printed. If the conditions are such that

J
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there is no solution, thiz alsc will be indicated. A 1ist of the program and samples
of outrut are included in Appendices A and B to this report.

k 3 Duta Arrangement

411 data Tor the Basic program 1s entered in data siatements bctween sistements
5000 and 7700. The ststement aumbers used here as examples are chosen for illustrs-
tion purposes; ithe user may muz=ber his data statements &s he chooses:

5001 De*s for this statement should be:
{2) number of charge weights
(v) number of gage depths
{c¢) charge depth {£t).

5002 This date siatement contains the individual charge weights (1b) given--
there may be 20 of these values; the number of charge weights is indicated
in 5001 (a).

5603 Each individual gage depth {ﬁ:) is listed in this statemesnt--again, there
&y be 20 e depths given. The number of gage depths given is specified
in 5001 (b%?g

5004 In this statewent, the desired impulse (I,, psi-msec) and integration
time (t,, msec) =ve given, respectively.

The data srrengement is iilustrated in the following =sxample: For 10-1b and 10C-1b
charges fired at L4O-ft depth, determine the ranges st which I, = 150 psi-msec vhen

tg = 2.5 ssec. Us2 gage depths of 10, 20, and 50 feet. Appropriate data statements
rollow:

5001 Data 2, 3, 4O
5002 Tmta 10, 100
5003 Data 10, 20, 50
5004 Data 150, 2.5

Rote that a new run is required if charge depth, given impulse, or given integration
time is changed.
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HORIZONTAL RANGE {FT)

120

EXPONENTIAL APPROXIMATION
PARTIAL IMPULSE = 100 PSI-MSEC

DEPTH (FT)

FREE-FIELD SHOCK WAVE
RANGE = 102.6 FEET
IMPULSE = 100 PSI-MSEC
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10
50

55 REM C=NUMBER @F CHG WTS G=NUMBER OF GAGE DPHS D=CHG DPH
60 FOR L =1 To C

70 READ UW(L)

75 REM W = INDIVIDUAL CHARGE WEIGHT>

80 NEXT L

90 FBR M = 1 T8 G

100 READ Y(M)

105 REM Y = INDIVIDUAL GAGE DEPTHS

110 NEXT M

112 PRINT

113 PRINT

115 PRINT "CHARGE DEPTH = ' D" FEET"

118 READ 10,70

119 REM 10 = GIVEN IMPULSE TO = GIVEN INTEGRATION TIME
120 FGR K = 1 Tg C

122 PRINT

124 PRINT

130 PRINT "CHARGE WEIGHT (LB) =" W(K)>

140 FGR M = 1 TG G

141 LET Xt = 1000

143 LET F = O

144 LET H = O

145 PRINT

147 PRINT

150 PRINT"GAGE DEPTH (FT) = "Y(M)

190 LET T(M) = TO

195 LET Al = I0+.!

197 LET Bl = I10-.1

200 PRINT "GIVEN IMPULSE (PSI-MSEC) = " IO

210 PRINT "GIVEN INTEGRATIGN TIME (MSEC> = "T{M)

220 LET J =1

230 LET RC(J) = (a4xY(MI%*D - (5%T0j3t2) 7 (10 % TO)

233 IF R(J) < O THEN 400

240 REM RANGE WHERE SURFACE CUT-@FF TIME = GIVEN INTEG. TIME IS R(D).
250 Gesus 1000

260 IF I(¢J) >=10 THEN 500

262 LET X1 = R(D)

265 REM MAX RANGE SO FAR IS Xi.

270 REM COMPUTED IMPULSE IS LESS THAN GIVEN IMPULSE.
278 LET F = 1

X E L F g Wy

DIM R(S50)s I(503)s T(503)s Y(20), W(20)
READ C»G»D

APPERIIX A
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280
290
300
310
320
330
350
360
370
390
400
402
404
406
408
410
412
415
416
4117
418
420
422
424
425
426
427
428
430
432
434
436
438
440
442
444
460
470
472
474
480
/85
500
505
510
534
535
540
545
550
570
580
5%0
600

v

FOR J 2 T9 S0

LET @ J-1

LET RCJ) = +5%R(Q)

REM TRYING A RANGE 1/2 OF PREVIOGUS RANGE.

GoSuUB 1000

IF 1(J) »= 10 THEN 700

REM FINDING A RANGE SMALL ENQUGH S ‘HAT GIVEN IMP CAN BE DELIVERED.
NEXT J

PRINT'AFTER 50 ITERATIONS ON DECREASED RANGE,GIVEN IMP NGT REACHED"
Gg T@ 5000

LET H = 1

GBSUB 3000

IF Y(M) = D THEN 426

REM CASE WHERE CHARGE AND GAGE LIE OM A VERTICAL LINE.

LET RC(J) = ABS(Y(M) - D)

GBSUB 1006

IF 1(J) >= 10 THEN 420

PRINT"SINCE IMPULSE CALCULATED AT THE LARGER @F GIVEN INTEGRATION"
PRINT"TIME @R SURFACE CUT-@OFF TIME IS LESS THAN THE GIVEN DESIRED"
PRINT"IMPUL3SE, THERE IS N@ SOLUTION."

G@ T@ 995

REM SINCE C@MPUTED IMP>GIVEN IMP., RANGE MAY BE INCREASED.

LET N1 = R(J)

REM MIN RANGE S@ FAR IS Nt.

Go TB 427

LET N1 = 0O

LET X1 = 10

IF X1 <=N1 THEN 432
Gg T2 434

LET X1 = N1 + 10
LET X9 = 1§

LET X8 = Xi

FBR J = 2 T 50

LET R(J) = X9 % X8

GASUB 2000

GoSUB 4000

G@SUB 1000

IF I(J> >= I0 THEN 700

LET X8 = X8 7 2

NEXT J

PRINT"NG CONVERGENCE AFTER 50 ITERATIONS GN 438."

G Ta 5000

REM SINCE COMPUTED IMP>GIVEN IMP WHERE SURFACE CUT-OFF TIME EQUALS
REM GIVEN INTEGRATION TIME, ATTEMPT IS MADE T8 FIND MAX RANGE AT
REM WHICH GIVEN IMP CAN BE DELIVERED WITHIN SURF CUT-@FF TIME.
LET N1 = R¢J)

REM MIN RANGE IS Ni1.

LET U = 10

LET 23 = R

FBR J = 2 T8 S0

REM TRYING A RANGE @F U x Z3.

LET RCJ) = U*xZ3

G@suB 2000

G@sus 1000
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IF 1¢(J)>=10 THEN 700
LET X1 = R(D)

REM MAX RANGE IS Xi. :

REM COMPUTED IMPULSE LESS THAN GIVEN IMPULSE.
LET U = urs2

NEXT J

PRINT "NO CONVERGENCE AFTER 50 ITERATIOGNS ON PARAG. 550"
G T@ 5000

LET N1 = RC(J)

REM MIN RAMGE S@ FAR IS Ni.

IF X1 <= N1 THEN 716

Gg To 720

LET X1 = N1 %100

REM LETTING MAX RANGE BE Xl.

FGR J = 3 TO 50

LET R(J) = X1 - (X1-N1)/2

REM TRYING A RANGE 1/2 OF WAY BETWEEN N1 AND X1.
IF F = 1 THEN 780

GOSUB 2000

G@ T8 790

LET T(My = TO

IF H<l THEN 799

G@SUB 4000

GGSUB 1000

IF I(J> > Bl THEN 825

G@ TG 835

IF I(J) < Al THEN 895

IF I1(J> » 10 THEN 860

REM CGMPUTED IMP NOT WITHIN GIVEN IMP +0R- 0.1 IMP TO@ SMALL.
LET X1 = R

REM NEW MAX RANGE IS Xi.

G@ T9@ 880

REM COMPUTED IMP NOT WITHIN GIVEN IMP +8R- 0.1 IMP T@2 LARGE.
LET Nt = R

REM NEW MIN RANGE IS wnl.

NEXT J

PRINT "NO CONVERGENCE AFTER SO ITERATIGBNS OGN 720."
G2 T8 5000

LET K4 = D-Y(M)

IF R(J) <ABS(K4) THEN 985

IF H =1 THEN 983

IF F = 1 THEN 990

G6 TO 987

IF T(M> < TO THEN 987

G TO 990

PRINT"NG SOLUTION----~~- GAGE AND CHARGE ARE Tg@ FAR APART."™
G2 Tg 995

PRINTTRANGE OF"R(J)"FEET HAS BEEN FZUND AT WHICH IMPULSE @F"IC(J)
PRINT"CAN BE DELIVERED IN"TC(M)'MSEC WHICH IS SURFACE CUT-OFF TIME."

GS T8 995

PRINT"RANGE @F'R(JI"FEET HAS BZEN FOUND AT WHICH IMPULSE OF"IC(J)
PRINT"CAN BE DELIVERED WITHIN"T(M)"MSEC WHICH IS GIVEN INTEGRATIGN'

PRINT "TIME. SURFACF REFLECTIONS D® NGT ARRIVE THIS EARLY."
NEXT ™
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996 NEXT K

998 G& T@ 7000 .

1000 REM THIS SUBRGUTINE C@MPUTES IMPULSE.

1030 LET Q=-16.67*T(M)/W(K)1.333% (WCK)$.333/ R(JI)1.22

1040 LET I€J) = 1300%WCK)1.333+CW(K)+.333/ RCJII*.91%C1-EXP(E))

1090 "RETURN

2000 REM THIS SUBRGUTINE COMPUTES SURFACE CUT-@FF TIME F@R EACH RANGE.
2030 LET T(M)=CCRCJ) 12+4%xY(MI*D)t.5-RC¢IIY 7 S |
2060 RETURN ,
3000 REM THIS SUBRQUTINE COMPUTES MAX TS (SURFACE CUT-@FF TIME). ¥
3001 REM (TO IS GIVEN INTEGRATION TIME.)

3002 REM N@ SOLUTION FBR TS = TO MUST FIND MAX TS ANC PROCEED. f
3005 IF D < Y(M) THEN 3020 -]
3010 LET T(M) = 2%Y(M) / 5.0

3011 IF D = Y(M) THEN 3017

3015 G@ T@ 3035

3017 RETURN

3020 LET T(M) = 2%D / 5.0

3035 IF T(M) < TO THEN 3045

3040 LET T(M) = TO

3042 REM TO<MAX TS USE TO IN COMPUTING IMPULSE.

3043 RETURN

3045 REM MAX TS<TO USE TS IN C@MPUTING IMPULSE.

3050 RETURN

4000 REM THIS SUBROUTINE FINDS SMALLER OF TO AND TS T@ BE USED F@R IMP"

4010 IF TO > T(M) THEN 405C

4020 LET T(M) = TO

4030 REM SINCE TO<TS, TO WILL BE USED IN CALCULATING IMPULSE.

4040 RETURN

4050 REM SINCE TS < TO, TS WILL BE USED IN CALCULATING IMPULSE.

24060 RETURN

5000 PRINT "ITERATIONS NEED REVISING"

5001 DATA 2 3,40

5002 DATA 10,100

5003 DATA 10,20,50

5004 DATA 15052.5

7000 ST@P

8000 END

Ak
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AFPERDIX B
SAMPLE OUTHUT
CHARGE DEPTH = 40 FEET
CHARGE WEIGHT LBl = 10
GAGE DEPTH (FTl = 10
GIVEN IMPULSE [{PSI-MSEC] = 150

GIVEN INTEGRATIGN TIME [MSEC] = 2.5

RANGE 9F 53.6331 FEET HAS BEEN FQUND AT WHICH IMPULSE 6F 150.023
CAN BE DELIVERED WITHIN 2.5 MSEC WHICH IS GIVEN INTEGRATION
TIME. SURFACE REFLECTIONS D@ N@T ARRIVE THIS EARLY.

GAGE DEPTH [FTI = 20

GIVEN IMPULSE [{PSI-MSEC] = 150

GIVEN INTEGRATIOW TIME [MSEC] = 2.5

RANGE OF 53.6223 FEET HAS BEEN F@UND AT WHICH IMPULSE @F 150.051
CAN BE DELIVERED WITHIN 2.5 MSEC WHICH IS GIVEN INTEGRATIGN
TIME. SURFACE REFLECTIGONS D& N8T ARRIVE THIS EARLY.

GAGE DEPTH [FT1l = 50

GIVEN IMFJLSE [PSI-MSEC] = 150

GIVEN INTEGRATION TIME EMSEC] = 2.5

RANGE @F 53.629 FEET HAS BEEN FGUND AT WHICH IMPULSE @F 150.034
CAN BE DELIVERED WITHIN 2.5 MSEC WHICH IS GIVEN INTEGRATIGN
TIME. SURFACE REFLECTIONS D8 NGT ARRIVE THIS EARLY.

CHARGE WE.’#AT L[LB) = 100

GAGE DEPTH I[FT1 = 10
GIVEN IMPULSE [PSI-MSECI] = 150
GIVEN INTEGRATISN TIME [MSECI = 2.5

RANGE 6F 190.62 FEET HAS BEEN FGUND AT WHICH IMPULSE &F 14%.909
CAN BE DELIVERED IN .830324 MSEC WHICH IS SURFACE CUT-GFF TIME.
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GAGE DEPTH (FTl = 20

GIVEN IMPULSE [PSI-MSEC] = 150

GIVEN INTEGRATI@GN TIME [MSEC] = 2.5

RANGE OF 231+402 FEET HAS BEEN FOUND AT WHICH IMPULSE 6F 149.994
CAN BE DELIVERED IN 1.36281 MSEC WHICH IS SURFACE CUT-@FF TIME.

L

GAGE DEPTH [(FT1 = 50

GIVEN IMPULSE [PSI-MSEC] = 150

GIVEN INTEGRATION TIME [MSEC] = 2.5

RANGE OF 261.05 FEET HAS BEEN FOUND AT WHICH IMPULSE @F 14%.955
CAN BE DELIVERED WITHIN 2.5 MSEC WHICH 1S5 GIVEN INTEGRATION
TIME. SURFACE REFLECTIGNS D@ NOT ARRIVE THIS EARLY.
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